If it's not what You are looking for type in the equation solver your own equation and let us solve it.
47k^2+6k=0
a = 47; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·47·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*47}=\frac{-12}{94} =-6/47 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*47}=\frac{0}{94} =0 $
| 8=b÷7 | | 8.3+0.25w=-23.7 | | h+80=-5 | | 18=6+4c | | f+99=704 | | (7x+5)+(11x+3)= | | 6x+5=12+2x | | 1.1=5.6-0.9c | | 68+4x+8=180 | | 4(x-2)+4x=6x-16 | | 7x+20=A | | g+412=806 | | -2x+21=19 | | 6x+22=-3x+3 | | 7x+4=-7x+4 | | 2377500+30x=3000000 | | 2a+12+4+2a+8=2a+8+12 | | 589=q+273 | | (5+x)x-2=6 | | (x-2)+2x=-3.5 | | -2(x-5)=8x-10 | | 589=a+273 | | 2/4x-14=6 | | 46q^2-45q-1=0 | | Y=x²+2x+1 | | b-154=183 | | 11x+-17=180 | | 0.75b=24 | | (2x+1)+(10x−10)+(3x+14)=180 | | 4x-15=5x+21 | | +(5+x)x-2=6 | | 8x2+23=823 |